Epsilon-tubulin is required for centriole duplication and microtubule organization.

نویسندگان

  • Paul Chang
  • Thomas H Giddings
  • Mark Winey
  • Tim Stearns
چکیده

Centrosomes nucleate microtubules and serve as poles of the mitotic spindle. Centrioles are a core component of centrosomes and duplicate once per cell cycle. We previously identified epsilon-tubulin as a new member of the tubulin superfamily that localizes asymmetrically to the two centrosomes after duplication. We show that recruitment of epsilon-tubulin to the new centrosome can only occur after exit from S phase and that epsilon-tubulin is associated with the sub-distal appendages of mature centrioles. Xenopus laevis epsilon-tubulin was cloned and shown to be similar to human epsilon-tubulin in both sequence and localization. Depletion of epsilon-tubulin from Xenopus egg extracts blocks centriole duplication in S phase and formation of organized centrosome-independent microtubule asters in M phase. We conclude that epsilon-tubulin is a component of the sub-distal appendages of the centriole, explaining its asymmetric localization to old and new centrosomes, and that epsilon-tubulin is required for centriole duplication and organization of the pericentriolar material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TBCD Links Centriologenesis, Spindle Microtubule Dynamics, and Midbody Abscission in Human Cells

Microtubule-organizing centers recruit alpha- and beta-tubulin polypeptides for microtubule nucleation. Tubulin synthesis is complex, requiring five specific cofactors, designated tubulin cofactors (TBCs) A-E, which contribute to various aspects of microtubule dynamics in vivo. Here, we show that tubulin cofactor D (TBCD) is concentrated at the centrosome and midbody, where it participates in c...

متن کامل

Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells

Centrioles are composed of long-lived microtubules arranged in nine triplets. However, the contribution of triplet microtubules to mammalian centriole formation and stability is unknown. Little is known of the mechanism of triplet microtubule formation, but experiments in unicellular eukaryotes indicate that delta-tubulin and epsilon-tubulin, two less-studied tubulin family members, are require...

متن کامل

NEDD1-dependent recruitment of the γ-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly

The centrosome is the major microtubule organizing structure in somatic cells. Centrosomal microtubule nucleation depends on the protein gamma-tubulin. In mammals, gamma-tubulin associates with additional proteins into a large complex, the gamma-tubulin ring complex (gammaTuRC). We characterize NEDD1, a centrosomal protein that associates with gammaTuRCs. We show that the majority of gammaTuRCs...

متن کامل

Drosophila SPD-2 Is an Essential Centriole Component Required for PCM Recruitment and Astral-Microtubule Nucleation

SPD-2 is a C. elegans centriolar protein required for both centriole duplication and pericentriolar material (PCM) recruitment [1-4]. SPD-2 is conserved in Drosophila (DSpd-2) and is a component of the fly centriole [5-7]. The analysis of a P element-induced hypomorphic mutation has shown that DSpd-2 is primarily required for PCM recruitment at the sperm centriole but is dispensable for both ce...

متن کامل

The Role of γ-Tubulin in Centrosomal Microtubule Organization

As part of a multi-subunit ring complex, γ-tubulin has been shown to promote microtubule nucleation both in vitro and in vivo, and the structural properties of the complex suggest that it also seals the minus ends of the polymers with a conical cap. Cells depleted of γ-tubulin, however, still display many microtubules that participate in mitotic spindle assembly, suggesting that γ-tubulin is no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature cell biology

دوره 5 1  شماره 

صفحات  -

تاریخ انتشار 2003